Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Immunol ; 67(2): 58-68, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478453

RESUMO

Anginosus group streptococci (AGS) are opportunistic pathogens of the human oral cavity; however, their pathogenicity has not been discussed in detail. Oral streptococci live in the gingival sulcus, from where they can easily translocate into the bloodstream due to periodontal diseases and dental treatment and cause hazardous effects on the host through their virulence factors. Streptolysin S (SLS), a pathogenic factor produced by ß-hemolytic species/strains belonging to AGS, plays an important role in damaging host cells. Therefore, we investigated the SLS-dependent cytotoxicity of ß-hemolytic Streptococcus anginosus subsp. anginosus (SAA), focusing on different growth conditions such as in the bloodstream. Consequently, SLS-dependent hemolytic activity/cytotoxicity in the culture supernatant of ß-hemolytic SAA was stabilized by blood components, particularly human serum albumin (HSA). The present study suggests that the secreted SLS, not only from ß-hemolytic SAA, but also from other SLS-producing streptococci, is stabilized by HSA. As HSA is the most abundant protein in human plasma, the results of this study provide new insights into the risk of SLS-producing streptococci which can translocate into the bloodstream.


Assuntos
Albumina Sérica Humana , Estreptolisinas , Humanos , Albumina Sérica Humana/metabolismo , Streptococcus pyogenes/metabolismo , Virulência , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo
2.
J Oral Microbiol ; 14(1): 2105013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937899

RESUMO

Background: Some strains of Streptococcus mitis exhibit ß-hemolysis due to the ß-hemolytic activity of cholesterol-dependent cytolysin (CDC). Recently, a gene encoding an atypical lectinolysin-related CDC was found in S. mitis strain Nm-76. However, the product of this gene remains uncharacterized. We aimed to characterize this atypical CDC and its molecular functions and contribution to the pathogenicity of S. mitis strain Nm-76. Methods: Phylogenetic analysis of the CDC gene was conducted based on the web-deposited information. The molecular characteristics of CDC were investigated using a gene-deletion mutant strain and recombinant proteins expressed in Escherichia coli. Results: The gene encoding CDC found in Nm-76 and its homolog are distributed among many S. mitis strains. This CDC is phylogenetically different from other previously characterized CDCs, such as S. mitis-derived human platelet aggregation factor (Sm-hPAF)/lectinolysin and mitilysin. Because this CDC possesses an additional N-terminal domain, including a discoidin motif, it was termed discoidinolysin (DLY). In addition to the preferential lysis of human cells, DLY displayed N-terminal domain-dependent facilitation of human erythrocyte aggregation and intercellular associations between human cells. Conclusion: DLY functions as a hemolysin/cytolysin and erythrocyte aggregation/intercellular association molecule. This dual-function DLY could be an additional virulence factor in S. mitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...